Combined removal experiment of multiple impurities from W/O emulsions under high frequency pulsed electric field: Study on laws of desalination, decalcification, and deacidification

Author:

Sun Zhiqian1,Li Wangqing1,Wang Xiaolei2,Li Ning1,Qi Zhuang1,Weng Shuo1

Affiliation:

1. College of New Energy China University of Petroleum (East China) Qingdao China

2. Wanhua Chemical Group Co., Ltd Yantai China

Abstract

AbstractElectrocoalescence is widely used to dehydrate crude oil, but impurities in crude oil are extremely complex, which greatly weaken the effect of dehydration. To understand the coupling law of various impurities, a static demulsification experiment was conducted under a high frequency and high voltage pulsed electric field to investigate the effects of electric field parameters (voltage, frequency, pulse width ratio), emulsification strength, electrocoalescence time, water content, acid value, injection alkali ratio, calcium content, decalcification agent concentration and removal process on desalination, decalcification, and deacidification. The results showed that the desalination and decalcification rates varied synchronously with the electric field parameters and water content. Additionally, the desalination and decalcification rates decreased with the emulsification strength, alkali injection ratio, acid value, and calcium content. Further, they increased first and then decreased with decalcifier concentration. The deacidification rate did not vary with the electric field parameters, but it strengthened with the water content and alkali injection ratio. Conversely, it decreased with the acid value, calcium content, and decalcifier concentration. Additionally, it increased first and then decreased with the emulsification intensity. The best removal procedure is deacidification followed by decalcification. These findings are helpful to achieve the combined removal of various impurities in crude oil.

Funder

Major Scientific and Technological Innovation Project of Shandong Province

Natural Science Foundation of Shandong Province

Publisher

Wiley

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3