Tough and Robust Mechanically Interlocked Gel–Elastomer Hybrid Electrode for Soft Strain Gauge

Author:

Huang Jianren1ORCID,Chen Anbang1,Han Songjiu1,Wu Qirui1,Zhu Jundong1,Zhang Jiayu1,Chen Yujia1,Liu Jiantao2,Guan Lunhui1ORCID

Affiliation:

1. CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350108 China

2. Xiamen Port Holding Group co. Ltd Xiamen 361012 China

Abstract

AbstractSoft strain gauges provide a flexible and versatile alternative to traditional rigid and inextensible gauges, overcoming issues such as impedance mismatch, the limited sensing range, and fatigue/fracture. Although several materials and structural designs are used to fabricate soft strain gauges, achieving multi‐functionality for applications remains a significant challenge. Herein, a mechanically interlocked gel–elastomer hybrid material is exploited for soft strain gauge. Such a material design provides exceptional fracture energy of 59.6 kJ m−2 and a fatigue threshold of 3300 J m−2, along with impressive strength and stretchability. The hybrid material electrode possesses excellent sensing performances under both static and dynamic loading conditions. It boasts a tiny detection limit of 0.05% strain, ultrafast time resolution of 0.495 ms, and high linearity. This hybrid material electrode can accurately detect full‐range human‐related frequency vibrations ranging from 0.5 to 1000 Hz, enabling the measurement of physiological parameters. Additionally, the patterned soft strain gauge, created through lithography, demonstrates superior signal–noise rate and electromechanical robustness against deformation. By integrating a multiple‐channel device, an intelligent motion detection system is developed, which can classify six typical human body movements with the assistance of machine learning. This innovation is expected to drive advancements in wearable device technology.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3