Affiliation:
1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences 1295 Ding Xi Road Shanghai 200050 China
2. School of Chemistry and Materials Science Hangzhou Institute of Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
3. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Beijing 100049 China
Abstract
AbstractSoft ionic elastomers that are self‐healable, fatigue‐free, and environment‐tolerant are ideal structural and sensing materials for artificial prosthetics, soft electronics, and robotics to survive unpredictable service conditions. However, most synthetic strategies failed to unite rapid healing, fatigue resistance, and environmental robustness, limited by their singular compositional/structural designs. Here, we present a soft, tough, fatigue‐resistant, and self‐healable ionic elastomer (STFSI elastomer), which fuses skin‐like binary assembly and Bouligand helicoidal structure into a composite of thermoplastic polyurethane (TPU) fibers and a supramolecular ionic biopolymer. The interlocked binary assembly enables skin‐like softness, high stretchability, and strain‐adaptive stiffening through a matrix‐to‐scaffold stress transfer. The Bouligand structure contributes to superhigh fracture toughness (101.6 kJ m−2) and fatigue resistance (4937 J m−2) via mechanical toughening by interlayer slipping and twisted crack propagation path. Besides, the STFSI elastomer is self‐healable through a “bridging” method and environment‐tolerant (−20 °C, strong acid/alkali, saltwater). To demonstrate the versatile structural and sensing applications, we showcase a safety cushion with efficient damping and suppressed rebounding, and a robotic sensor with excellent fatigue crack tolerance and instant sensation recovery upon cutting‐off damage. Our presented synthetic strategy is generalizable to other fiber‐reinforced tough polymers for applications involving demanding mechanical/environmental conditions.
Funder
National Natural Science Foundation of China
International Cooperation Project of Ningbo City