Abstract
AbstractCatastrophically mechanical failure of soft self-healing materials is unavoidable due to their inherently poor resistance to crack propagation. Here, with a model system, i.e., soft self-healing polyurea, we present a biomimetic strategy of surpassing trade-off between soft self-healing and high fracture toughness, enabling the conversion of soft and weak into soft yet tough self-healing material. Such an achievement is inspired by vascular smooth muscles, where core-shell structured Galinstan micro-droplets are introduced through molecularly interfacial metal-coordinated assembly, resulting in an increased crack-resistant strain and fracture toughness of 12.2 and 34.9 times without sacrificing softness. The obtained fracture toughness is up to 111.16 ± 8.76 kJ/m2, even higher than that of Al and Zn alloys. Moreover, the resultant composite delivers fast self-healing kinetics (1 min) upon local near-infrared irradiation, and possesses ultra-high dielectric constants (~14.57), thus being able to be fabricated into sensitive and self-healing capacitive strain-sensors tolerant towards cracks potentially evolved in service.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
99 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献