Affiliation:
1. School of Electronic Science and Engineering University of Electronic Science and Technology of China Chengdu 611731 China
2. Yangtze Delta Region Institute University of Electronic Science and Technology of China Huzhou 313000 China
Abstract
AbstractNanoscale air channel transistors (NACTs) have received significant attention due to their remarkable high‐frequency performance and high switching speed, which is enabled by the ballistic transport of electrons in sub‐100 nm air channels. Despite these advantages, NACTs are still limited by low currents and instability compared to solid‐state devices. GaN, with its low electron affinity, strong thermal and chemical stability, and high breakdown electric field, presents an appealing candidate as a field emission material. Here, a vertical GaN nanoscale air channel diode (NACD) with a 50 nm air channel is reported, fabricated by low‐cost IC‐compatible manufacturing technologies on a 2‐inch sapphire wafer. The device boasts a record field emission current of 11 mA at 10 V in the air and exhibits outstanding stability during cyclic, long‐term, and pulsed voltage testing. Additionally, it displays fast switching characteristics and good repeatability with a response time of fewer than 10 ns. Moreover, the temperature‐dependent performance of the device can guide the design of GaN NACTs for applications in extreme conditions. The research holds great promise for large current NACTs and will speed up their practical implementation.
Funder
Fundamental Research Funds for the Central Universities
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献