High-frequency performance in nanoscale vacuum channel transistors with gate-cathode height difference

Author:

Chen YuezhongORCID,Zhai Xin,Lin Congyuan,Liu Ziyang,Zhang Xiaobing,Xu Ji

Abstract

Abstract Nanoscale vacuum channel transistors (NVCTs) have garnered considerable interest due to their outstanding high frequency characteristics and high reliability, stemming from a distinct carrier transport mechanism compared to solid-state devices. Electrons traverse the nanoscale vacuum channel through scattering-free ballistic transport. However, existing research has predominantly focused on the structural design and optimization of NVCTs, with relatively few studies delving into their high frequency performance. Hence, alongside structural exploration and optimizing, investigating the high-frequency characteristics of NVCTs assumes particular importance. In this study, a novel NVCTs with a gate-cathode height difference structure was proposed and its electrical characteristics were simulated. Simulation results reveal that the presence of gate-cathode height difference effectively enhance the DC characteristics of NVCTs. Moreover, high frequency simulation demonstrate that the proposed device can operate frequency exceeding 1 THz. Whitin the GHz and even terahertz (THz) range, NVCTs exhibits exceptional high frequency properties, including ultrafast response times and minimal distortion. These findings not only offer insights for future structural design and optimization of NVCTs but also underscore the potential of NVCTs in radio frequency and THz applications.

Funder

National Key Research and Development Program of China

Major Research Plan of the National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3