Affiliation:
1. Biomedical and Mobile Health Technology (BMHT) Group Department of Health Sciences and Technology ETH Zürich Lengghalde 5 Zürich 8008 Switzerland
Abstract
AbstractMobile health technology and activity tracking with wearable sensors enable continuous unobtrusive monitoring of movement and biophysical parameters. Advancements in clothing‐based wearable devices have employed textiles as transmission lines, communication hubs, and various sensing modalities; this area of research is moving towards complete integration of circuitry into textile components. A current limitation for motion tracking is the need for communication protocols demanding physical connection of textile with rigid devices, or vector network analyzers (VNA) with limited portability and lower sampling rates. Inductor–capacitor (LC) circuits are ideal candidates as textile sensors can be easily implemented with textile components and allow wireless communication. In this paper, the authors report a smart garment that can sense movement and wirelessly transmit data in real time. The garment features a passive LC sensor circuit constructed of electrified textile elements that sense strain and communicate through inductive coupling. A portable, lightweight reader (fReader) is developed for achieving a faster sampling rate than a downsized VNA to track body movement, and for wirelessly reading sensor information suitable for deployment with a smartphone. The smart garment–fReader system monitors human movement in real‐time and exemplifies the potential of textile‐based electronics moving forward.
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献