Affiliation:
1. State Key Laboratory of Millimeter Waves Southeast University Nanjing 210096 China
2. Institute of Electromagnetic Space Southeast University Nanjing 210096 China
3. School of Electronics and Information Hangzhou Dianzi University Hangzhou 310018 China
Abstract
AbstractA space‐time coding metasurface (STCM) operating in the sub‐terahertz band to construct new‐architecture wireless communication systems is proposed. Specifically, a programmable STCM is designed with varactor‐diode‐tuned metasurface elements, enabling precise regulation of harmonic amplitudes and phases by adjusting the time delay and duty cycle of square‐wave modulation signal loaded on the varactor diodes. Independent electromagnetic (EM) regulations in the space and time domains are achieved by STCM to realize flexible beam manipulations and information modulations. Based on these features, a sub‐terahertz wireless communication link is constructed by employing STCM as a transmitter. Experimental results demonstrate that the STCM supports multiple modulation schemes including frequency‐shift keying, phase‐shift keying, and quadrature amplitude modulations in a wide frequency band. It is also shown that the STCM is capable of realizing wide‐angle beam scanning in the range of ±45o, which offers an opportunity for user tracking during the communication. Thus, the STCM transmitter with high device density and low power consumption can provide low‐complexity, low‐cost, low‐power, and low‐heat solutions for building the next‐generation wireless communication systems in the sub‐terahertz frequency and even terahertz band.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Higher Education Discipline Innovation Project
Fundamental Research Funds for the Central Universities
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献