Efficient Manipulation of Near‐Field Terahertz Waves: Individually Addressable Transmissive Meta‐Device

Author:

Wang Peng1,Fu Xiaojian12ORCID,Yang Jun3,Fu Yuan1,Cai Qingdong1,Liu Yujie1,Yang Silei1,Shi Jianshu4,Zheng Shilie5,Cui Tie Jun12

Affiliation:

1. State Key Laboratory of Millimeter Waves Southeast University Nanjing 210096 China

2. Institute of Electromagnetic Space Southeast University Nanjing 210096 China

3. National Engineering Laboratory of Special Display Technology Academy of Opto‐electric Technology Hefei University of Technology Hefei 230009 China

4. Ceyear Technologies Co., Ltd Qingdao 266555 China

5. College of Information Science and Electronic Engineering Zhejiang University Hangzhou 310027 China

Abstract

AbstractDue to the powerful capability in manipulating electromagnetic (EM) waves, digital coding and programmable metasurfaces have found vast application prospects across numerous areas such as next‐generation wireless communications and digital holography. Liquid crystals (LCs), as dielectric materials with significant birefringence effect over a wide frequency range, provide a cost‐effective solution for achieving the programmable metasurfaces and flexible EM manipulations, especially in the terahertz (THz) band. Different from the conventional 1D control and single functionality of transmissive LC‐based devices, here, a 16 × 16 addressable amplitude‐phase coding meta‐device is proposed to support for frequency multiplexing by using the film on glass (FOG) technology. Both numerical simulations and experimental results demonstrate that the meta‐atom exhibits an amplitude modulation depth over 90% and a phase tuning range ≈180° at two distinct frequencies, and hence the single meta‐device can provide multifunctional EM applications, including near‐field printing imaging, 3D THz energy convergence, and zero‐order Bessel beam generation. The proposed strategy paves a way for constructing highly integrated and high‐performance THz multifunctional information processing systems.

Funder

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3