Multi-mode non-diffraction vortex beams enabled by polarization-frequency multiplexing transmissive terahertz metasurfaces

Author:

Wu Mingzhong1ORCID,He Xunjun1,Lu Guangjun2ORCID,Geng Zhaoxin3ORCID,Zhang Ying4ORCID

Affiliation:

1. School of Electrical and Electronic Engineering, Harbin University of Science and Technology 1 , Harbin 150080, China

2. College of Electronic Engineering, Guangxi Normal University 2 , Guilin 541004, China

3. School of Information Engineering, Minzu University of China 3 , Beijing 100081, China

4. College of Science, Harbin University of Science and Technology 4 , Heilongjiang 150080, China

Abstract

In terahertz (THz) wireless communication systems, non-diffraction vortex beams carrying an orbital angular momentum (OAM) have attracted extensive attention due to their ability to transmit information over long distances with high capacity. However, existing metasurfaces can only generate a single OAM mode non-diffracting vortex beam at reflection space for circular polarization (CP) incidence, limiting practical applications. To address this issue, we propose and design a polarization-frequency multiplexing transmissive THz metasurface to realize multi-mode non-diffracting vortex beams at linear polarization (LP) incidence. The meta-atom of this metasurface is composed of three anisotropic rectangular metallic structures embedded in vanadium dioxide (VO2) square rings, two circular aperture metallic grid layers, and four dielectric layers. By reasonably designing the size of the metal patch and the state of VO2, the designed metasurface can achieve polarization multiplexing and frequency multiplexing for LP incidence. Based on the phase response of the proposed meta-atoms, the transmissive metasurface can implement not only multi-mode non-diffraction vortex beams but also their space separation at two frequency ranges of 0.80–0.90 THz and 1.50–1.80 THz by changing the state of VO2. Therefore, the proposed multiple multiplexing metasurfaces can effectively shape the wavefront of non-diffraction vortex beams, which have broad application prospects in 6G THz communication.

Funder

National Natural Science Foundation of China

National Key Research and Development Plan of China

Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments

Project of Innovative and Entrepreneurship Training Program for College Students in Herilongjiang Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3