Perovskite Nanocrystals Protected by Hermetically Sealing for Highly Bright and Stable Deep‐Blue Light‐Emitting Diodes

Author:

Hong Yongju1ORCID,Yu Chungman1,Je Hyeondoo1,Park Jin Young1,Kim Taekyung2ORCID,Baik Hionsuck2ORCID,Tomboc Gracita M.1ORCID,Kim Youngseo1,Ha Jung Min1,Joo Jinwhan1,Kim Chai Won1,Woo Han Young1ORCID,Park Sungnam1ORCID,Choi Dong Hoon1ORCID,Lee Kwangyeol1ORCID

Affiliation:

1. Department of Chemistry and Research Institute for Natural Sciences Korea University Seoul 02841 Republic of Korea

2. Korea Basic Science Institute (KBSI) Seoul 02841 Republic of Korea

Abstract

AbstractMetal–halide perovskite nanocrystals (NCs) have emerged as suitable light‐emitting materials for light‐emitting diodes (LEDs) and other practical applications. However, LEDs with perovskite NCs undergo environment‐induced and ion‐migration‐induced structural degradation during operation; therefore, novel NC design concepts, such as hermetic sealing of the perovskite NCs, are required. Thus far, viable synthetic conditions to form a robust and hermetic semiconducting shell on perovskite NCs have been rarely reported for LED applications because of the difficulties in the delicate engineering of encapsulation techniques. Herein, a highly bright and durable deep‐blue perovskite LED (PeLED) formed by hermetically sealing perovskite NCs with epitaxial ZnS shells is reported. This shell protects the perovskite NCs from the environment, facilitates charge injection/transport, and effectively suppresses interparticle ion migration during the LED operation, resulting in exceptional brightness (2916 cd m−2) at 451 nm and a high external quantum efficiency of 1.32%. Furthermore, even in the unencapsulated state, the LED shows a long operational lifetime (T50) of 1192 s (≈20 min) in the air. These results demonstrate that the epitaxial and hermetic encapsulation of perovskite NCs is a powerful strategy for fabricating high‐performance deep‐blue‐emitting PeLEDs.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3