Recent Progress in the Composites of Perovskite Nanocrystals and II-VI Quantum Dots: Their Synthesis, Applications, and Prospects

Author:

Wu Qiaoyun1,Hu Rongrong1,Yang Bobo1,Peng Wenfang1,Shi Mingming1,Li Yuefeng1,Cheng Lin2,Liang Pan3,Zou Jun1

Affiliation:

1. School of Science, Shanghai Institute of Technology, Shanghai, 201418, China

2. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China

3. College of Arts and Sciences, Shanghai Dianji University, Shanghai, 201306, China

Abstract

Abstract: The remarkable photoelectric characteristics of perovskite nanocrystals (NCs), including high fault tolerance, tunable photoluminescence (PL) emission, and high carrier mobility, contribute to making them especially attractive for photonic and optoelectronic applications. Unfortunately, the poor environmental thermal and light stability set obstacles to their industrial applications. Over the past 40 years, II-VI semiconductor quantum dots (QDs) have achieved many important photophysics findings and optoelectronic applications. Compared with perovskite NCs, II-VI semiconductor QDs still have a relatively weaker molar absorbance coefficient. Whereas, significant enhancement of both the stability and the optical performance of the composites of perovskite NCs and II-VI QDs are of interest for photovoltaic and optoelectronic devices. The composites of perovskite NCs and II-VI QDs come in two primary types: core/shell structures and heterojunction structures. To better understand the composites of perovskite NCs and II-VI QDs, the approaches of synthesis methods, their optoelectronic properties, carrier dynamics and potential applications in solar cells, light emitting diodes (LEDs) and photodetectors are summarized. Furthermore, the unmet problems and the potential applications are also presented.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Shanghai Science and Technology Committee (STCSM) Science and Technology Innovation Program

Science and Technology Talent Development Fund for Young and Middle-aged Teachers of Shanghai Institute of Technology

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3