Field‐Induced Transparent Electrode‐Integrated Transparent Solar Cells and Heater for Active Energy Windows: Broadband Energy Harvester

Author:

Patel Malkeshkumar1ORCID,Kim Sangho1ORCID,Kim Joondong1ORCID

Affiliation:

1. Photoelectric and Energy Device Application Lab (PEDAL), Multidisciplinary Core Institute for Future Energies (MCIFE) and Department of Electrical Engineering Incheon National University 119 Academy Rd. Yeonsu Incheon 22012 Republic of Korea

Abstract

AbstractInvisible power generation by natural and artificial light enables sustainability by onsite‐power deployment, lower cost, and minimal burden on the built environment. However, dark, opaque photovoltaics limit light utilization in a transparent way. Herein, it is proposed that the active energy window (AEW) invisibly features power production, providing higher freedom for onsite power generators in window objects without limiting human vision. The AEW has a transparent photovoltaic (TPV) for onsite power and a transparent heater (TH) to remove the effects of shadows from snow and recover the power lost. Moreover, a heating function is applied to remove the effects of weathering related to snow. The proposed prototype integrates a TPV‐TH, offering ultraviolet (UV)‐blocking, daylighting, thermal comfort, and onsite power with a power conversion efficiency of 3% (AM1.5G). Field‐induced transparent electrodes are applied to the TPV‐TH and designed considering the AEW. Owing to these electrodes, the AEW ensure a wide field‐of‐view without optical dead zones, ensuring see‐through vision. The first TPV‐TH integration is performed into a 2 cm2‐window that generates onsite power of 6 mW and has an average visible transmittance of ≈39%. It is believed that light can be utilized with comfort through the AEW in self‐sustainable buildings and vehicles.

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3