High‐Performance Hot‐Exciton OLEDs via Fully Harvesting Triplet Excited States from Both the Exciplex Co‐Host and the TBRb Emitter

Author:

Wei Fuxian1,Chen Jing1,Zhao Xi1,Wu Yuting1,Wang Huiyao1,Chen Xiaoli1,Xiong Zuhong1ORCID

Affiliation:

1. Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, School of Physical Science and Technology Southwest University Chongqing 400715 P. R. China

Abstract

AbstractThe high‐level reverse intersystem crossing (HL‐RISC, T2 → S1) process from triplet to singlet exciton, namely the “hot exciton” channel, has recently been demonstrated in the traditional fluorescent emitter of TBRb. Although it is a potential pathway to improve the utilization of non‐radiative triplet exciton energy, highly efficient fluorescent organic light emitting diodes (FOLEDs) based on this “hot exciton” channel have not been developed. Herein, high‐efficiency and low‐efficiency roll‐off FOLEDs are achieved through doping TBRb molecules into an energy‐level matched exciplex co‐host. Combining the low‐level RISC (LL‐RISC, EX3 → EX1) process in the exciplex co‐host with the HL‐RISC process of hot excitons in TBRb to fully harvest the triplet energy, a record‐high external quantum efficiency (EQE) of 20.4% is obtained via a proper Dexter energy transfer of triplet excitons, realizing the efficiency breakthrough from fully fluorescent material‐based OLEDs with TBRb as an end emitter. Furthermore, the fingerprint Magneto‐electroluminescence (MEL) as a sensitive measuring tool is employed to visualize the “hot exciton” channel in TBRb, which also directly verifies the effective energy confinement and the full utilization of hot excitons. Obviously, this work paves a promising way for further fabricating high‐efficiency TBRb‐based FOLEDs for lighting and flat‐panel display applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3