High‐Strength Smart Microneedles with “Offensive and Defensive” Effects for Intervertebral Disc Repair

Author:

Meng Qingchen1,Xie En1,Sun Heng1,Wang Huan1,Li Jiaying1,Liu Zhao1,Li Kexin1,Hu Jie1,Chen Qianglong1,Liu Chaoyong2,Li Bin1,Han Fengxuan1ORCID

Affiliation:

1. Medical 3D Printing Center Orthopedic Institute Department of Orthopedic Surgery The First Affiliated Hospital School of Biology and Basic Medical Sciences Suzhou Medical College Soochow University Suzhou Jiangsu 215000 China

2. Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Life Science and Technology Beijing University of Chemical Technology Beijing 100029 China

Abstract

AbstractIntervertebral disc degeneration (IVDD) is a global public health issue. The injury of annulus fibrosus (AF) caused by acupuncture or discectomy can trigger IVDD again. However, there is currently no suitable method for treating AF injury. In this study, the high‐strength smart microneedles (MNs) which can penetrate the AF tissue through a local and minimally invasive method, and achieve remote control of speeded‐up release of the drug and hyperthermia by the Near Infrared is developed. The PDA/GelMA composite MNs loaded with diclofenac sodium are designed to extracellularly “offend” the inflammatory microenvironment and mitigate damage to cells, and intracellularly increase the level of cytoprotective heat shock proteins to enhance the defense against the hostile microenvironment, achieving “offensive and defensive” effects. In vitro experiments demonstrate that the synergistic treatment of photothermal therapy and anti‐inflammation effectively reduces inflammation, inhibits cell apoptosis, and promotes the synthesis of the extracellular matrix (ECM). In vivo experiments show that the MNs mitigate the inflammatory response, promote ECM deposition, reduce the level of apoptosis, and restore the biomechanical properties of the intervertebral disc (IVD) in rats. Overall, this high‐strength smart MNs display promising “offensive and defensive” effects that can provide a new strategy for IVD repair.

Funder

National Natural Science Foundation of China

International Cooperation Project of Ningbo City

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3