Water‐Induced Shape‐Locking Magnetic Robots

Author:

Lou He1ORCID,Wang Yibin12ORCID,Sheng Yifeng1,Zhu He1ORCID,Zhu Shiping1ORCID,Yu Jiangfan12ORCID,Zhang Qi1ORCID

Affiliation:

1. School of Science and Engineering The Chinese University of Hong Kong Shenzhen 518172 China

2. Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen 518172 China

Abstract

AbstractUntethered magnetic soft robots capable of performing adaptive locomotion and shape reconfiguration open up possibilities for various applications owing to their flexibility. However, magnetic soft robots are typically composed of soft materials with fixed modulus, making them unable to exert or withstand substantial forces, which limits the exploration of their new functionalities. Here, water‐induced, shape‐locking magnetic robots with magnetically controlled shape change and water‐induced shape‐locking are introduced. The water‐induced phase separation enables these robots to undergo a modulus transition from 1.78 MPa in the dry state to 410 MPa after hydration. Moreover, the body material's inherent self‐healing property enables the direct assembly of morphing structures and magnetic soft robots with complicated structures and magnetization profiles. These robots can be delivered through magnetic actuation and perform programmed tasks including supporting, blocking, and grasping by on‐demand deformation and subsequent water‐induced stiffening. Moreover, a water‐stiffening magnetic stent is developed, and its precise delivery and water‐induced shape‐locking are demonstrated in a vascular phantom. The combination of untethered delivery, on‐demand shape change, and water‐induced stiffening properties makes the proposed magnetic robots promising for biomedical applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3