A Silver‐Induced Absorption Red‐Shifted Dual‐Targeted Nanodiagnosis‐Treatment Agent for NIR‐II Photoacoustic Imaging‐Guided Photothermal and ROS Simultaneously Enhanced Immune Checkpoint Blockade Antitumor Therapy

Author:

Bai Yulong12,Hua Jing1,Zhao Jingjin1,Wang Shulong1,Huang Mengjiao1,Wang Yang1,Luo Yanni1,Zhao Shulin1ORCID,Liang Hong1

Affiliation:

1. State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Science Guangxi Normal University Guilin 541004 China

2. School of Medicine Shanghai Research Institute for Intelligent Autonomous Systems Tongji University Shanghai 200092 China

Abstract

AbstractTumor metastasis remains a leading factor in the failure of cancer treatments and patient mortality. To address this, a silver‐induced absorption red‐shifted core‐shell nano‐particle is developed, and surface‐modified with triphenylphosphonium bromide (TPP) and hyaluronic acid (HA) to obtain a novel nanodiagnosis‐treatment agent (Ag@CuS‐TPP@HA). This diagnosis‐treatment agent can dual‐targets cancer cells and mitochondria, and exhibits maximal light absorption at 1064 nm, thereby enhancing nesr‐infrared II (NIR‐II) photoacoustic (PA) signal and photothermal effects under 1064 nm laser irradiation. Additionally, the silver in Ag@CuS‐TPP@HA can catalyze the Fenton‐like reactions with H2O2 in the tumor tissue, yielding reactive oxygen species (ROS). The ROS production, coupled with enhanced photothermal effects, instigates immunogenic cell death (ICD), leading to a substantial release of tumor‐associated antigens (TAAs) and damage‐associated molecular patterns, which have improved the tumor immune suppression microenvironment and boosting immune checkpoint blockade therapy, thus stimulating a systemic antitumor immune response. Hence, Ag@CuS‐TPP@HA, as a cancer diagnostic‐treatment agent, not only accomplishes targeted the NIR‐II PA imaging of tumor tissue and addresses the challenge of accurate diagnosis of deep cancer tissue in vivo, but it also leverages ROS/photothermal therapy to enhance immune checkpoint blockade, thereby eliminating primary tumors and effectively inhibiting distant tumor growth.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3