Testing coverage‐based software reliability growth model considering uncertainty of operating environment

Author:

Pradhan Vishal1ORCID,Dhar Joydip2,Kumar Ajay2

Affiliation:

1. School of Applied Sciences Kalinga Institute of Industrial Technology, KIIT‐DU Bhubaneswar Odisha India

2. Department of Applied Sciences ABV‐Indian Institute of Information Technology and Management Gwalior Gwalior Madhya Pradesh India

Abstract

AbstractSoftware reliability is one of the standard critical inherent characteristics of software systems. The testing coverage function (TCF) is a significant parameter for identifying the completeness and effectiveness of software testing. It is defined as the proportion of the code that has been tested up to time t. To capture the dynamic behavior of the number of faults detected over a period of time, several distributions, namely S‐shaped, inflection S‐shaped, logistic, log‐logistic, Weibull, Rayleigh, Erlang, and logarithmic exponentiated, have been used as TCF in literature. However, these distributions are not sufficient to describe TCF's practical behavior due to complexity and vagueness in the collected data. This study proposes two software reliability growth models (SRGMs), which incorporate the generalized inflection S‐shaped (GISS) distribution as TCF. The models have been developed in perfect and imperfect debugging environments while considering fault removal efficiency, error generation, and uncertainty in the operating environment. To analyze the effectiveness, the proposed models are then tested with six failure data sets. The choice of GISS distribution as a TCF improves the software reliability estimation in comparison with the existing models in the literature. Finally, single and multiple parameters sensitivity analysis also has been done and based on it, the critical parameters have been detected. The proposed models may be helpful for the system analyst to predict various parameters about some software systems.

Publisher

Wiley

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3