Developing an Innovative Imperfect Debugging Software Reliability Growth Model with Enhanced Testing Coverage Strategies

Author:

Nazir Rabia1ORCID,Iqbal Javaid1ORCID,Masoodi Faheem Syeed1ORCID,Shrivastava Avinash K.2ORCID

Affiliation:

1. Department of Computer Science, University of Kashmir, Srinagar, India

2. International Management Institute, Kolkata, West Bengal, India

Abstract

In this paper, we introduce an innovative Software Reliability Growth Model (SRGM) designed to tackle the pivotal challenges associated with software reliability in the contemporary digital landscape, where the prevalence of online systems is ubiquitous. This SRGM integrates Imperfect Debugging (ID), Testing Coverage (TC), Testing Effort (TE), and error generation into a cohesive framework. Employing a sigmoid function to encapsulate TE, it incorporates three distinct TC functions: Delayed S-shaped, Exponential, and Logistic. This model relies on foundational assumptions, including the proportionality of fault detection rates to remaining faults, the introduction of new faults during debugging, and the intricate connection between fault detection and code coverage. The Mean Value Function (MVF) is computed through these differential equations, and the resultant MVFs are systematically tabulated for all models. An examination of the sigmoid TE function and the Weibull TE function across diverse datasets, utilizing a range of goodness-of-fit criteria including Mean Square Error (MSE), Pham’s Criterion (PC), Predictive Risk Ratio (PRR), Bayesian Information Criterion (BIC), and Akaike’s Information Criterion (AIC), reveals the superior performance of the sigmoid TE function over the Weibull counterpart across various datasets and evaluation criteria. In conclusion, this paper introduces a groundbreaking SRGM that seamlessly integrates ID, TC, and TE, offering valuable insights for assessing software reliability in the dynamic landscape of modern digital systems.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3