A Software Reliability Model Considering a Scale Parameter of the Uncertainty and a New Criterion

Author:

Song Kwang Yoon12,Kim Youn Su1,Pham Hoang3,Chang In Hong1

Affiliation:

1. Department of Computer Science and Statistics, Chosun University, Gwangju 61452, Republic of Korea

2. Institute of Well-Aging Medicare & Chosun University LAMP Center, Chosun University, Gwangju 61452, Republic of Korea

3. Department of Industrial and Systems Engineering, Rutgers University, Piscataway, NJ 08855-8018, USA

Abstract

It is becoming increasingly common for software to operate in various environments. However, even if the software performs well in the test phase, uncertain operating environments may cause new software failures. Traditional proposed software reliability models under uncertain operating environments suffer from the problem of being well-suited to special cases due to the large number of assumptions involved. To improve these problems, this study proposes a new software reliability model that assumes an uncertain operating environment. The new software reliability model is a model that minimizes assumptions and minimizes the number of parameters that make up the model, so that the model can be applied to general situations better than the traditional proposed software reliability models. In addition, various criteria based on the difference between the predicted and estimated values have been used in the past to demonstrate the superiority of the software reliability models. Also, we propose a new multi-criteria decision method that can simultaneously consider multiple goodness-of-fit criteria. The multi-criteria decision method using ranking is useful for comprehensive evaluation because it does not rely on individual criteria alone by ranking and weighting multiple criteria for the model. Based on this, 21 existing models are compared with the proposed model using two datasets, and the proposed model is found to be superior for both datasets using 15 criteria and the multi-criteria decision method using ranking.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3