“Organized stress” for robust scale‐up of intensified production process with fed‐batch seed bioreactor

Author:

Ben Yahia Bassem1ORCID,Piednoir Antoine1,Dahomais Thomas1,Eggermont Stefanie1,Paul Wolfgang1

Affiliation:

1. Biologics Process Sciences, Biotech Sciences, UCB Pharma S.A. Avenue de l'Industrie Brussels Braine l'Alleud Belgium

Abstract

AbstractProcess intensification has been widely used for many years in the mammalian biomanufacturing industry to increase productivity, agility and flexibility while reducing production costs. The most commonly used intensified processes are operated using a perfusion or fed‐batch seed bioreactor enabling a higher than usual seeding density in the fed‐batch production bioreactor. Hence, as part of the growth phase is shifted to the seed bioreactor, there is a lower split ratio, which increases the criticality of the seed bioreactor and could impact production performance. Therefore, such intensified processes should be designed and characterized for robust process scale‐up. This research work is focused on intensified processes with high seeding density inoculated from seed bioreactor in fed‐batch mode. The impact of the feeding strategy and specific power input (P/V) in the seed bioreactor and on the production step with two different cell lines (CL1 and CL2) producing two different monoclonal antibodies was investigated. Cell culture performance in the production bioreactor has been improved due to more stressful conditions for the cells in the seed bioreactor and the impact of the production bioreactor P/V on the production performance was limited. This is the first reported study highlighting a positive impact of cellular stress in seed bioreactors on intensified production bioreactor with the introduction of the “organized stress” concept.

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3