Developing an ultra‐intensified fed‐batch cell culture process with greatly improved performance and productivity

Author:

Xiang Shaoxun1,Zhang Jinliang1,Yu Le1ORCID,Tian Jun1,Tang Wenxiu1,Tang Hao1,Xu Kecui1,Wang Xin1,Cui Yanyan1,Ren Kaidi1,Cao Weijia1,Su Yuning1,Zhou Weichang2

Affiliation:

1. Process Development WuXi Biologics Wuxi China

2. Waigaoqiao Free Trade Zone WuXi Biologics Shanghai China

Abstract

AbstractIntensified fed‐batch (IFB), a popular cell culture intensification strategy, has been widely used for productivity improvement through high density inoculation followed by fed‐batch cultivation. However, such an intensification strategy may counterproductively induce rapidly progressing cell apoptosis and difficult‐to‐sustain productivity. To improve culture performance, we developed a novel cell culture process intermittent‐perfusion fed‐batch (IPFB) which incorporates one single or multiple cycles of intermittent perfusion during an IFB process for better sustained cellular and metabolic behaviors and notably improved productivity. Unlike continuous perfusion or other semi‐continuous processes such as hybrid perfusion fed‐batch with only early‐stage perfusion, IPFB applies limited times of intermittent perfusion in the mid‐to‐late stage of production and still inherits bolus feedings on nonperfusion days as in a fed‐batch culture. Compared to IFB, an average titer increase of ~45% was obtained in eight recombinant CHO cell lines studied. Beyond IPFB, ultra‐intensified IPFB (UI‐IPFB) was designed with a markedly elevated seeding density of 20–80 × 106 cell/mL, achieved through the conventional alternating tangential flow filtration (ATF) perfusion expansion followed with a cell culture concentration step using the same ATF system. With UI‐IPFB, up to ~6 folds of traditional fed‐batch and ~3 folds of IFB productivity were achieved. Furthermore, the application grounded in these two novel processes showed broad‐based feasibility in multiple cell lines and products of interest, and was proven to be effective in cost of goods reduction and readily scalable to a larger scale in existing facilities.

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3