Accurate and automatic mapping of complex debris‐covered glacier from remote sensing imagery using deep convolutional networks
Author:
Affiliation:
1. School of Engineering and Technology China University of Geosciences (Beijing) Beijing China
2. Institute of Geosafety China University of Geosciences (Beijing) Beijing China
Funder
National Natural Science Foundation of China
Publisher
Wiley
Subject
Geology
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1002/gj.4615
Reference49 articles.
1. Machine-learning classification of debris-covered glaciers using a combination of Sentinel-1/-2 (SAR/optical), Landsat 8 (thermal) and digital elevation data
2. An inventory of Norway's glaciers and ice-marginal lakes from 2018–19 Sentinel-2 data
3. Ayma V. Beltran C. Happ P. Costa G. A. &Feitosa R. Q.(2019)Mapping Ausangate glacier changes using clustering techniques on cloud computing infrastructure. Proceedings of the 7th international conference on remote sensing and Geoinformation of the environment (RSCy) Cyprus Remote Sensing Soc Paphos CYPRUS.
4. Automated Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery Using Deep Learning
5. Analysis of various optimizers on deep convolutional neural network model in the application of hyperspectral remote sensing image classification
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Mapping of Supra-Glacial Debris Cover in the Greater Caucasus: A Semi-Automated Multi-Sensor Approach;Geosciences;2024-06-27
2. When complementarity meets consistency: weighted collaboration fusion constrained by consistency between views for multi-view remote sensing scene classification;International Journal of Remote Sensing;2023-12-02
3. Susceptibility analysis of glacier debris flow by investigating glacier changes based on remote sensing imagery and deep learning: A case study;Natural Hazards Research;2023-12
4. Susceptibility Analysis of Glacier Debris Flow Based on Remote Sensing Imagery and Deep Learning: A Case Study along the G318 Linzhi Section;Sensors;2023-07-22
5. Application of artificial intelligence in geotechnical and geohazard investigations;Geological Journal;2023-05-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3