Mapping of Supra-Glacial Debris Cover in the Greater Caucasus: A Semi-Automated Multi-Sensor Approach

Author:

Tielidze Levan G.12ORCID,Iacob George3,Holobâcă Iulian Horia3ORCID

Affiliation:

1. Securing Antarctica’s Environmental Future, School of Earth, Atmosphere and Environment, Monash University, Clayton, VIC 3800, Australia

2. School of Natural Sciences and Medicine, Ilia State University, Tbilisi 0162, Georgia

3. GeoTomLab, Faculty of Geography, Babeş-Bolyai University, 400006 Cluj-Napoca, Romania

Abstract

Supra-glacial debris cover is important for the control of surface ice melt and glacier retreat in mountain regions. Despite the progress in techniques based on various satellite imagery, the mapping of debris-covered glacier boundaries over large regions remains a challenging task. Previous studies of the debris-covered glaciers in the Greater Caucasus have only focused on limited areas. In this study, using the Sentinel 1–2 imagery (2020), DebCovG-carto toolbox, and existing glacier inventory (2020), we produced the first detailed assessment of supra-glacial debris cover for individual glaciers in the entire Greater Caucasus. Our study shows that in 2020, 10.3 ± 5.6% of the glacier surface in this mountain region was covered by debris. A comparison of sub-regions such as the Elbrus Massif and other individual glaciers from the central Greater Caucasus shows an increasing trend of supra-glacial debris cover from 2014 to 2020. The total area of supra-glacial debris cover expanded from ~4.6% to ~5.8% for Elbrus and from ~9.5% to ~13.9% for the glaciers of the central Greater Caucasus during the same period. Supra-glacial debris cover also expanded upward on these glaciers between 2014 and 2020. A recent increase in rock-ice avalanche activity in combination with increased air temperature and decreased precipitation in the Greater Caucasus may be responsible for this upward migration and expanded area of supra-glacial debris cover. This study provides valuable insights into the spatial distribution, temporal evolution, and factors influencing supra-glacial debris cover in the Greater Caucasus. The findings contribute to our understanding of glacier dynamics and highlight the importance of continuous monitoring and assessment of supra-glacial debris cover in the context of climate change and glacier retreat. We recommend using the DebCovG-carto toolbox for regional assessment of supra-glacial debris coverage in other mountain regions as well.

Funder

Shota Rustaveli National Science Foundation of Georgia

Australian Research Council (ARC) Special Research Initiative (SRI) Securing Antarctica’s Environmental Future

Publisher

MDPI AG

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3