Susceptibility Analysis of Glacier Debris Flow Based on Remote Sensing Imagery and Deep Learning: A Case Study along the G318 Linzhi Section

Author:

Chen Jiaqing1,Gao Hong1,Han Le1,Yu Ruilin1,Mei Gang12ORCID

Affiliation:

1. School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China

2. Engineering and Technology Innovation Center for Risk Prevention and Control of Major Project Geosafety, Ministry of Natural Resources, Beijing 100083, China

Abstract

Glacial debris flow is a common natural disaster, and its frequency has been increasing in recent years due to the continuous retreat of glaciers caused by global warming. To reduce the damage caused by glacial debris flows to human and physical properties, glacier susceptibility assessment analysis is needed. Most research efforts consider the effect of existing glacier area and ignore the effect of glacier ablation volume change. In this paper, we consider the impact of glacier ablation volume change to investigate the susceptibility of glacial debris flow. The susceptibility to mudslide was evaluated by taking the glacial mudslide-prone ditch of G318 Linzhi section of Sichuan-Tibet Highway as the research object. First, by using a simple band ratio method with manual correction, we produced a glacial mudslide remote sensing image dataset, and second, we proposed a deep-learning-based approach using a weight-optimized glacial mudslide semantic segmentation model for accurately and automatically mapping the boundaries of complex glacial mudslide-covered remote sensing images. Then, we calculated the ablation volume by the change in glacier elevation and ablation area from 2015 to 2020. Finally, glacial debris flow susceptibility was evaluated based on the entropy weight method and Topsis method with glacial melt volume in different watersheds as the main factor. The research results of this paper show that most of the evaluation indices of the model are above 90%, indicating that the model is reasonable for glacier boundary extraction, and remote sensing images and deep learning techniques can effectively assess the glacial debris flow susceptibility and provide support for future glacial debris flow disaster prevention.

Funder

China University of Geosciences (Beijing) Student Innovation 516 and Entrepreneurship Training Programme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3