Tailoring polyamide 6 to exhibit super‐tough behavior and high thermomechanical stability: The role of AES and EPDM‐MA hybridization

Author:

da Silva Pamela Thainara Vieira1,Barreto Luna Carlos Bruno1ORCID,dos Santos Filho Edson Antonio1,do Nascimento Emanuel Pereira1,Araújo Edcleide Maria1

Affiliation:

1. Academic Unit of Materials Engineering, Polymer Processing Laboratory Federal University of Campina Grande Campina Grande Brazil

Abstract

AbstractHigh‐performance blends based on polyamide 6 (PA6) were prepared using a hybrid mixture of acrylonitrile/EPDM/styrene (AES) and maleic anhydride grafted ethylene–propylene–diene (EPDM‐MA). Samples were processed in a twin‐screw extruder and injection molded. The torque curves of the PA6/AES/EPDM‐MA blends shifted to higher torque values with added EPDM‐MA, suggesting a chemical interaction between the components. The melt flow index (MFI) results for the PA6/AES/EPDM‐MA blends confirmed the intensification of the flow resistance. Intense infrared absorption peaks for NH and CO indicated that the amine groups of PA6 reacted with the maleic anhydride in EPDM‐MA. The 60/25/15 wt% PA6/AES/EPDM‐MA blend showed an impact strength over 800 J/m, heat deflection temperature (HDT) of 62.3°C, elongation at break of 115%, and contact angle of 59.1°, corresponding to increases of 1718%, 10.5%, 297%, and 10%, respectively, compared to neat PA6. When examined by scanning electron microscopy, the morphology showed a fracture surface with a high degree of plastic deformation and the formation of elastic microfibrils, contributing to the super toughening of the PA6/AES/EPDM‐MA (15%) system. These results indicate the technological potential of the PA6/AES/EPDM‐MA (15 wt%) blends for application in industrial sectors that require super‐tough plastics.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3