Toward the production of biopolyethylene‐based ecocomposites with improved performance: The potential of eggshell particles as an ecological additive

Author:

Bezerra Elieber Barros1,Wellen Renate Maria Ramos1,Barreto Luna Carlos Bruno2ORCID,da Silva Barbosa Ferreira Eduardo2,do Nascimento Emanuel Pereira2,Araújo Edcleide Maria2

Affiliation:

1. Department of Materials Engineering Federal University of Paraíba, Cidade Universitária João Pessoa Paraíba Brazil

2. Academic Unit of Materials Engineering, Federal University of Campina Grande, Polymer Processing Laboratory Campina Grande Paraíba Brazil

Abstract

AbstractLow‐density biopolyethylene (BioLDPE) ecocomposites added with particles of eggshell (ES) residue were produced using linear low‐density polyethylene grafted with maleic anhydride (LDPE‐g‐MA) as a compatibilizing agent. BioLDPE/ES and BioLDPE/ES/LDPE‐g‐MA compounds were processed in a twin‐screw extruder, and the specimens were injection molded. Torque rheometry increased and melt flow index reduced more prominently for the BioLDPE/LDPE‐g‐MA biocomposite with 20 phr ES, suggesting higher viscosity. Consequently, there was a higher level of ES particles breakdown, generating greater distribution and dispersion, as verified in optical microscopy and scanning electron microscopy images. This finding was supported by Fourier transform infrared spectroscopy, considering the intense absorption band at 871 cm−1 for BioLDPE/ES (20 phr)/LDPE‐g‐MA biocomposite, indicating a higher level of ES particles dispersion in BioLDPE matrix. Therefore, BioLDPE/ES (20 phr)/LDPE‐g‐MA biocomposite increased the elastic modulus, tensile strength, Shore D hardness, and heat deflection temperature by 51.4%, 16.9%, 16.4%, and 14, 6%, respectively, related to BioLDPE. Additionally, the flexibility was kept as seen in the elongation at break and impact strength, including not fractured during the impact test. Reported results for the biocomposites are valuable mainly for the polymer additive sector, since the ES has the potential to improve BioLDPE properties, expanding the range of applications.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Apoio à Pesquisa do Estado da Paraíba

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3