Anisotropic Polybenzimidazole Ion‐Solvating Membranes Composed of Aligned Nano‐Sheets for Efficient Acid‐Alkaline Amphoteric Water Electrolysis

Author:

Huang Zequan1,Zhu Danyi1,Benicewicz Brian C.2,Zhu Tianyu3,Liang Jiazhen1,Zhu Taizhong1,Zhang Liang1,Liu Mengjiao1,Gao Congjie1,Huang Fei1ORCID,Xue Lixin45ORCID

Affiliation:

1. Center for Membrane Separation and Water Science & Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 China

2. Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA

3. Department of Materials Science and Engineering Clemson University Clemson SC 29634 USA

4. College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 China

5. Institute of Novel Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325024 China

Abstract

AbstractAcid‐alkaline amphoteric water electrolysis (AAA‐WE) can produce green hydrogen under reduced voltage and energy consumption. However, its conflicting demands on ion exchange membranes to have both high ionic conductivity and barrier properties between H+ and OH have thwarted its own development. Here, the preparation of anisotropic polybenzimidazole (PBI) ion‐solvating membrane (ISM) made of hundreds of 28 nm thick nano‐sheets (PBI‐aNS) from gel state PBI (PBI‐Gel) membranes via 2D‐polarized/1D shrinking process, in which loosely packed multi‐layer PBI nano‐fibrous assemblies are shrunken into hundreds of layers of tight 28 nm thick nano‐sheets, is reported. The resulting PBI‐aNS membranes possess excellent dual‐ion conductivity (H+ and OH), good acid/alkali barrier capability, and robust mechanical properties. Acid‐alkaline amphoteric water electrolysis (AAA‐WE) using PBI‐aNS separators achieves a high current density of 1 A cm−2 at 1.4 V (with iR‐correction) under a voltage increasing rate of 6.1 mV h−1. This newly designed ISM will lead to new possibilities for the development of next‐generation water electrolysis devices with improved green hydrogen production efficiencies.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3