Sulfonated para‐Polybenzimidazole Membranes for Use in Vanadium Redox Flow Batteries

Author:

Bui Trung Tuyen1ORCID,Shin Mingyu2ORCID,Abbas Saleem3ORCID,Ikhsan Muhammad Mara14,Do Xuan Huy1,Dayan Asridin14ORCID,Almind Mads Radmer5ORCID,Park Sungmin2,Aili David5ORCID,Hjelm Johan5ORCID,Hwang Jinyeon3ORCID,Ha Heung Yong3,Azizi Kobra6,Kwon Yongchai2ORCID,Henkensmeier Dirk147ORCID

Affiliation:

1. Hydrogen·Fuel Cell Research Center Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea

2. Department of Chemical and Biomolecular Engineering Seoul National University of Science and Technology Seoul 01811 Republic of Korea

3. Center for Energy Storage Research Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea

4. Division of Energy & Environment Technology KIST School University of Science and Technology Seoul 02792 Republic of Korea

5. Department of Energy Conversion and Storage Technical University of Denmark (DTU) Kgs. Lyngby 2800 Denmark

6. Blue World Technologies Kvistgaard 3490 Denmark

7. Graduate School of Energy and Environment Korea University Seoul 02841 Republic of Korea

Abstract

AbstractIon conducting membranes play a crucial role in redox flow batteries, separating anolyte and catholyte while allowing proton transport to complete the circuit. However, most membranes are trapped in a trade‐off relation and show either low conductivity or high vanadium crossover. This study investigates the use of dense sulfonated para‐polybenzimidazole membranes for vanadium redox flow batteries (VRFBs), and analyzes the effects of membrane preparation process, membrane thickness and operating temperature on the VRFB performance. The results demonstrate superior performance of VRFBs utilizing fluorine‐free sulfonated para‐polybenzimidazole membranes compared to other types. Under optimal conditions, the VRFB exhibits high coulombic efficiency (>99%) and high energy efficiency (EE, 92.2% at a current density of 80 mA cm−2), and durability. The achieved EE represents one of the highest reported in the literature for VRFBs. In addition, it is shown that operation at 35 °C has benefits at high current densities (EE at 300 mA cm−2 is over 80% at 35 °C but 72% at 25 °C), while the operation at 80 mA cm−2 only shows a small temperature effect (91.8 and 92.2%, respectively).

Funder

Innovationsfonden

Korea Institute for Advancement of Technology

Publisher

Wiley

Reference44 articles.

1. Vanadium Flow Battery for Energy Storage: Prospects and Challenges

2. Electrochemical Energy Storage for Green Grid

3. Highly efficient vanadium redox flow batteries enabled by a trilayer polybenzimidazole membrane assembly

4. M.Woolery Solving the technical and economic challenges to reprocessing VRFB electrolyte https://usvanadium.com/solving‐the‐technical‐and‐economic‐challenges‐to‐reprocessing‐vrfb‐electrolyte/(accessed December2023).

5. Capital cost evaluation of conventional and emerging redox flow batteries for grid storage applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3