Affiliation:
1. Institute of Materials Research and Engineering (IMRE) A*STAR (Agency for Science Technology and Research) 2 Fusionopolis Way Singapore 138634 Singapore
2. College of Materials Science and Engineering Tongji University Shanghai 201804 P. R. China
3. Department of Materials Science and Engineering National University of Singapore Singapore 117574 Singapore
Abstract
AbstractDirect formic acid fuel cells (DFAFCs) are among the promising energy sources in the future low‐carbon economy. A key challenge hindering their scale‐up and commercialization is the lack of efficient electrocatalysts for anodic formic acid oxidation (FAO). Very recently, the FAO performance of palladium hydrides (PdHx) has been found to be superior to the pristine Pd that is well known for its high intrinsic FAO activity. However, there is enormous space for the controlled synthesis and electrocatalytic behaviors of PdHx‐based nanomaterials awaiting to be explored. Herein, the hydrogen intercalation‐induced crystallization of PdNiP alloy nanoparticles is reported, and the obtained PdNiP‐H nanoparticles exhibit excellent FAO performance. Of particular note, the FAO stability of PdNiP‐H is much better than that of pristine Pd‐H. Furthermore, the PdNiP‐H nanoparticles are used as the anode catalyst in a prototype DFAFC, which demonstrate much higher power density than commercial Pd/C. Density functional theory calculations show that the synergistic effect of alloying Ni and P endows the PdNiP‐H with a higher preference toward FAO via the direct pathway and better anti‐CO* poisoning capability. This work shines new light on the development of PdHx‐based nanoalloys with good activity and stability for DFAFC applications.
Funder
Science and Engineering Research Council
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献