Crystal‐Phase‐ and B‐Content‐Dependent Electrochemical Behavior of Pd─B Nanocrystals toward Oxygen Reduction Reaction

Author:

Wahidah Hafidatul1,Chun Hee‐Joon2,Kim Woo Hyeok3,Kim Tae Wu3,Kim Seok Ki45,Hong Jong Wook1ORCID

Affiliation:

1. Department of Chemistry University of Ulsan Ulsan 44776 Republic of Korea

2. Department of Chemistry Chungnam National University Daejeon 34134 Republic of Korea

3. Department of Chemistry Mokpo National University Muan‐gun 58554 Republic of Korea

4. Department of Energy System Research Ajou University Suwon 16499 Republic of Korea

5. Department of Chemical Engineering Ajou University Suwon 16499 Republic of Korea

Abstract

AbstractThe manipulation of crystal phases in metal–nonmetal interstitial alloy nanostructures has attracted considerable attention due to the formation of unique electronic structures and surface atomic arrangements, resulting in unprecedented catalytic performances. However, achieving simultaneous control over crystal phase and nonmetal elements in metal–nonmetal interstitial alloy nanostructures has remained a formidable challenge. Here, a novel synthesis approach is presented for Pd─B interstitial alloy nanocrystals (NCs) that allows investigation of the crystal‐phase‐ and B‐content‐dependent catalytic performance. Through comparison of the oxygen reduction reaction (ORR) properties of Pd─BX interstitial alloy NCs with different crystal phases and B contents, achieved by precise control of reaction temperature and time, the influences of crystal phase and B contents in the Pd─BX interstitial alloy NCs on ORR are precisely investigated. The hexagonal closed packed (hcp) PdB0.5 NCs exhibit superior catalytic activity, with mass activities reaching 2.58 A mg−1, surpassing Pd/C by 10.3 times, attributed to synergistic effects by the hcp crystal phase and relatively high B contents. This study not only provides a novel approach to fabricate interstitial alloy nanostructures with unconventional crystal phases and finely controlled nonmetal elements but also elucidates the importance of crystal phase and nonmetal element content in optimizing electrocatalytic efficiency.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3