Balancing Pd–H Interactions: Thiolate‐Protected Palladium Nanoclusters for Robust and Rapid Hydrogen Gas Sensing

Author:

Chen Zhuo12ORCID,Yuan Peng34,Chen Cailing14ORCID,Wang Xinhuilan34,Wang Jinrong14,Jia Jiaqi34,Davaasuren Bambar5,Lai Zhiping14ORCID,Khashab Niveen M.14ORCID,Huang Kuo‐Wei34ORCID,Bakr Osman M.34ORCID,Yin Jun6ORCID,Salama Khaled N.12ORCID

Affiliation:

1. Advanced Membranes and Porous Materials Center King Abdullah University of Science and Technology (KAUST) Thuwal 23955−6900 Saudi Arabia

2. Computer Electrical and Mathematical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955−6900 Saudi Arabia

3. KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955−6900 Saudi Arabia

4. Physical Sciences and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955−6900 Saudi Arabia

5. Imaging and Characterization Core Lab King Abdullah University of Science and Technology (KAUST) Thuwal 23955−6900 Saudi Arabia

6. Department of Applied Physics The Hong Kong Polytechnic University Hong Kong 999077 China

Abstract

AbstractThe transition toward hydrogen gas (H2) as an eco‐friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H2 leak detection and concentration monitoring. Although palladium (Pd)‐based materials are preferred for their strong H2 affinity, intense palladium–hydrogen (Pd–H) interactions lead to phase transitions to palladium hydride (PdHx), compromising sensors’ durability and detection speeds after multiple uses. In response, this study introduces a high‐performance H2 sensor designed from thiolate‐protected Pd nanoclusters (Pd8SR16), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium–hydrogen–sulfur (Pd–H–S) state during H2 adsorption. Striking a balance, it preserves Pd–H binding affinity while preventing excessive interaction, thus lowering the energy required for H2 desorption. The dynamic adsorption‐dissociation‐recombination‐desorption process is efficiently and highly reversible with Pd8SR16, ensuring robust and rapid H2 sensing at parts per million (ppm). The Pd8SR16‐based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t90 = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd‐based H2 sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real‐world gas sensing using ligand‐protected metal nanoclusters.

Funder

King Abdullah University of Science and Technology

Hong Kong Polytechnic University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3