A High‐Capacity and High‐Voltage Aqueous Zn‐Polymer Battery with Self‐Charging Function

Author:

Xu Qiuju1,Zhang Xinxin2,Yuan Xiangcheng1,Zhang Weixuan1,Li Yiqing1,Zhang Yuegang2,Liu Jinzhang1ORCID

Affiliation:

1. School of Materials Science and Engineering Beihang University Beijing 100191 China

2. Department of Physics Tsinghua University Beijing 100083 China

Abstract

AbstractOrganic electrodes in aqueous batteries rely on electrochemical redox reactions for charge and discharge. The organic cathode at a discharged state can be spontaneously oxidized when exposed to air, which facilitates the development of air‐charging batteries. However, polymer cathodes in aqueous rechargeable Zn‐ion batteries (ARZIBs) generally show low discharge median voltage below 1 V. Herein, a new polymer cathode is reported that is prepared by electrodepositing poly(4‐hydroxydiphenylamine, HDPA) onto mesoporous activated carbon and shows a relatively high discharge voltage plateau at ≈1.1 V when coupled with a Zn anode. Its self‐charging performances at different conditions are investigated. Also, a high areal capacity of 3.8 mAh cm−2 of the cathode is achieved. The poly(4‐HDPA) contains both amino and carbonyl groups, and the carbonyl group is found to be fully responsible for redox reaction. Further investigation suggests that both Zn2+ and H+ in the ZnSO4 electrolyte participate in the charge storage process, and the H+ plays a dominant role. The air‐charging mechanism of this polymer cathode is elucidated both experimentally and theoretically. To demonstrate the practical applications, prototypes of box‐shaped battery pack are air‐charged to either drive a mini electric fan or light up LEDs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3