Se Vacancy Activated Bi2Se3 Nanodots Encapsulated in Porous Carbon Nanofibers for Aqueous Zinc and Ammonium Ion Batteries

Author:

Long Bei12,Ma Xinyang1,Chen Lijuan13,Song Ting1,Pei Yong1,Wang Xianyou1,Wu Xiongwei245ORCID

Affiliation:

1. School of Chemistry Xiangtan University Xiangtan 411105 P. R. China

2. Hunan Engineering Technology Research Center of Vanadium Flow Battery and Energy Storage System Hunan Province Yinfeng New Energy Co, Ltd. Changsha 410019 P. R. China

3. College of Intelligent Science and Engineering Hunan Institute of Engineering Xiangtan 411104 P. R. China

4. School of Chemistry and Materials Science Hunan Agricultural University Changsha 410128 P. R. China

5. State Key Laboratory of High‐Efficiency and High‐Quality Conversion for Electric Power College of Electrical and Information Engineering Hunan University Changsha 410082 P. R. China

Abstract

AbstractBismuth‐based materials show great potential in aqueous batteries. But it is difficult to design a bifunctional bismuth‐based material for zinc and ammonium ion batteries (ZIBs and AIBs). Herein, a electrospinning method followed by a selenization strategy is used to design Bi2Se3 nanodots embedded in porous carbon nanofibers. Experimental studies coupled with theoretical calculations prove that the designs of nanodot and Se vacancy improve the transfer and storage of Zn2+ and NH4+. Bi2Se3 nanodots are restricted to porous carbon nanofibers during cyclic test. An insertion‐type mechanism is revealed by ex situ characterizations. As a result, this well‐designed electrode (6 mg cm−2) offers high reversible capacities of 270 mA h g−1 in ZIBs and 192 mA h g−1 in AIBs at 0.05 A g−1 and long‐term cycle life (60% capacity retention at 10 A g−1 after 20 K cycles for ZIBs, 78% capacity retention at 2 A g−1 after 9 K cycles for AIBs). Remarkably, it still displays satisfactory performances even at an ultrahigh mass loading of 18 mg cm−2. Furthermore, Zn2+ and NH4+ full cells offer high reversible capacities of 120 and 90 mA h g−1 at 0.05 A g−1 respectively. This work provides a reference for designing a bifunctional electrode.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3