A Long‐Range Planar Polymer with Efficient π‐Electron Delocalization for Superior Proton Storage

Author:

Wang Renyuan1,He Jing1,Yan Chao1ORCID,Jing Renwei1,Zhao Yue1,Yang Jun1,Shi Minjie1ORCID,Yan Xingbin2ORCID

Affiliation:

1. School of Materials Science and Engineering Jiangsu University of Science and Technology Zhenjiang 212003 P. R. China

2. School of Materials Science and Engineering Sun Yat‐Sen University Guangzhou 510275 P. R. China

Abstract

AbstractDue to the unique “Grotthus mechanism”, aqueous proton batteries (APBs) are promising energy devices with intrinsic safety and sustainability. Although polymers with tunable molecular structures are ideal electrode materials, their unsatisfactory proton‐storage redox behaviors hinder the practical application in APB devices. Herein, a novel planar phenazine (PPHZ) polymer with a robust and extended imine‐rich skeleton is synthesized and used for APB application for the first time. The long‐range planar configuration achieves ordered molecular stacking and reduced conformational disorder, while the high conjugation with strong π‐electron delocalization optimizes energy bandgap and electronic properties, enabling the polymer with low proton diffusion barriers, high redox activity, and superior electron affinity. As such, the PPHZ polymer as an electrode material exhibits fast, stable, and unrivaled proton‐storage redox behaviors with a large capacity of 273.3 mAh g−1 at 0.5 A g−1 (1 C) in 1 M H2SO4 electrolyte, which is the highest value among proton‐inserted electrodes in aqueous acidic electrolytes. Dynamic in situ techniques confirm the high redox reversibility upon proton uptake/removal, and the corresponding protonation pathways are elucidated by theoretical calculations. Moreover, a pouch‐type APB cell using PPHZ electrode exhibits an ultralong lifespan over 30 000 cycles, further verifying its promising application prospect.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Basic and Applied Basic Research Foundation of Guangdong Province

Marine Equipment and Technology Institute, Jiangsu University of Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3