Gel Adsorbed Redox Mediators Tempo as Integrated Solid‐State Cathode for Ultra‐Long Life Quasi‐Solid‐State Na–Air Battery

Author:

Xu Bowen123,Zhang Da123,Peng Chao4,Liang Feng123,Zhao Huaping5,Yang Bin123,Xue Dongfeng4,Lei Yong5ORCID

Affiliation:

1. Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province Kunming University of Science and Technology Kunming 650093 China

2. National Engineering Research Center of Vacuum Metallurgy Kunming University of Science and Technology Kunming 650093 China

3. Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology Kunming 650093 China

4. Multiscale Crystal Materials Research Center Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China

5. Fachgebiet Angewandte Nanophysik Institut für Physik & IMN MacroNano Technische Universität Ilmenau 98693 Ilmenau Germany

Abstract

AbstractIn metal–air batteries, the integrated solid‐state cathode is considered a promising design because it can solve the problem of high interfacial resistance of conventional solid‐state cathodes. However, solid discharge products cannot be efficiently decomposed in an integrated solid‐state cathode, resulting in batteries that are unable to operate for long periods of time. Herein, an integrated solid‐state cathode (Gel‐Tempo cathode) of sodium–air batteries (SABs) capable of promoting efficient decomposition of discharge product Na2O2 is designed. The Gel‐Tempo cathode is synthesized by cationic–π interaction of redox mediator 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (Tempo) and ionic liquid with carbon nanotubes. The Gel‐Tempo cathode serves multiple functions as a redox mediator, flame retardancy, and high stability to air. In quasi‐solid‐state SABs, the Gel‐Tempo cathode reduces overpotential to 1.15 V and improves coulomb efficiency to 84.5% (at a limited discharge capacity of 3000 mAh g−1) compared to gel cathodes. Experiments and density functional theory calculations indicate that Tempo significantly reduces the Gibbs free energy in the decomposition reaction of Na2O2, and high Tempo content is more conducive to enhancing the decomposition kinetics of Na2O2 and hence resulting in an ultra‐long cycle life (1746 h). This work is crucial to promote practical applications of SABs, providing guidelines for functionalization design of integrated solid‐state cathodes for metal–air batteries.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Shenzhen Science and Technology Innovation Program

Deutsche Forschungsgemeinschaft

Chinesisch-Deutsche Zentrum für Wissenschaftsförderung

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3