Unveiling the impact of unchanged modules across versions on the evaluation of within‐project defect prediction models

Author:

Liu Xutong1ORCID,Zhou Yufei2,Lu Zeyu1,Mei Yuanqing1ORCID,Yang Yibiao1,Qian Junyan2,Zhou Yuming1ORCID

Affiliation:

1. State Key Laboratory for Novel Software Technology Nanjing University Nanjing China

2. School of Computer Science and Engineering and School of Software Guangxi Normal University Guilin China

Abstract

AbstractBackgroundSoftware defect prediction (SDP) is a topic actively researched in the software engineering community. Within‐project defect prediction (WPDP) involves using labeled modules from previous versions of the same project to train classifiers. Over time, many defect prediction models have been evaluated under the WPDP scenario.ProblemData duplication poses a significant challenge in current WPDP evaluation procedures. Unchanged modules, characterized by identical executable source code, are frequently present in both target and source versions during experimentation. However, it is still unclear how and to what extent the presence of unchanged modules affects the performance assessment of WPDP models and the comparison of multiple WPDP models.MethodIn this paper, we provide a method to detect and remove unchanged modules from defect datasets and unveil the impact of data duplication in WPDP on model evaluation.ResultsThe experiments conducted on 481 target versions from 62 projects provide evidence that data duplication significantly affects the reported performance values of individual learners in WPDP. However, when ranking multiple WPDP models based on prediction performance, the impact of removing unchanged instances is not substantial. Nevertheless, it is important to note that removing unchanged instances does have a slight influence on the selection of models with better generalization.ConclusionWe recommend that future WPDP studies take into consideration the removal of unchanged modules from target versions when evaluating the performance of their models. This practice will enhance the reliability and validity of the results obtained in WPDP research, leading to improved understanding and advancements in defect prediction models.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3