How Far We Have Progressed in the Journey? An Examination of Cross-Project Defect Prediction

Author:

Zhou Yuming1,Yang Yibiao1,Lu Hongmin1,Chen Lin1,Li Yanhui1,Zhao Yangyang1,Qian Junyan2,Xu Baowen1

Affiliation:

1. Nanjing University, Jiangsu Province, P.R. China

2. Guilin University of Electronic Technology, Guilin, Guangxi Province, P.R. China

Abstract

Background. Recent years have seen an increasing interest in cross-project defect prediction (CPDP), which aims to apply defect prediction models built on source projects to a target project. Currently, a variety of (complex) CPDP models have been proposed with a promising prediction performance. Problem. Most, if not all, of the existing CPDP models are not compared against those simple module size models that are easy to implement and have shown a good performance in defect prediction in the literature. Objective. We aim to investigate how far we have really progressed in the journey by comparing the performance in defect prediction between the existing CPDP models and simple module size models. Method. We first use module size in the target project to build two simple defect prediction models, ManualDown and ManualUp, which do not require any training data from source projects. ManualDown considers a larger module as more defect-prone, while ManualUp considers a smaller module as more defect-prone. Then, we take the following measures to ensure a fair comparison on the performance in defect prediction between the existing CPDP models and the simple module size models: using the same publicly available data sets, using the same performance indicators, and using the prediction performance reported in the original cross-project defect prediction studies. Result. The simple module size models have a prediction performance comparable or even superior to most of the existing CPDP models in the literature, including many newly proposed models. Conclusion. The results caution us that, if the prediction performance is the goal, the real progress in CPDP is not being achieved as it might have been envisaged. We hence recommend that future studies should include ManualDown/ManualUp as the baseline models for comparison when developing new CPDP models to predict defects in a complete target project.

Funder

National Key Basic Research and Development Program of China

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 147 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3