Novel Insights on Cross Project Fault Prediction Applied to Automotive Software
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-319-25945-1_9
Reference29 articles.
1. Altinger, H., Siegl, S., Dajsuren, Y., Wotawa, F.: A novel industry grade dataset for fault prediction based on model-driven developed automotive embedded software. In: Proceedings of the 12th Working Conference on Mining Software Repositories (MSR). IEEE, Florence, Italy (2015)
2. Altinger, H., Wotawa, F., Schurius, M.: Testing methods used in the automotive industry: results from a survey. In: Proceedings of the 2014 Workshop on Joining AcadeMiA and Industry Contributions to Test Automation and Model-Based Testing (JAMAICA). ACM (2014)
3. Bell, R.M., Ostrand, T.J., Weyuker, E.J.: Looking for bugs in all the right places. In: Proceedings of the 2006 International Symposium on Software Testing and Analysis (ISSTA). ACM (2006)
4. Broy, M.: Challenges in automotive software engineering. In: Proceedings of the 28th International Conference on Software Engineering. ACM (2006). http://doi.acm.org/10.1145/1134285.1134292
5. Camargo Cruz, A.E., Ochimizu, K.: Towards logistic regression models for predicting fault-prone code across software projects. In: Proceedings of the 3rd International Symposium on Empirical Software Engineering and Measurement (ESEM). IEEE Computer Society (2009)
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Predicting just‐in‐time software defects to reduce post‐release quality costs in the maritime industry;Software: Practice and Experience;2020-11-04
2. State-of-the-Art Tools and Methods Used in the Automotive Industry;Automotive Systems and Software Engineering;2019
3. A Comparative Study to Benchmark Cross-Project Defect Prediction Approaches;IEEE Transactions on Software Engineering;2018-09-01
4. How Far We Have Progressed in the Journey? An Examination of Cross-Project Defect Prediction;ACM Transactions on Software Engineering and Methodology;2018-06-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3