Insights on advanced g‐C3N4 in energy storage: Applications, challenges, and future

Author:

Yang Xiaojie1,Peng Jian2ORCID,Zhao Lingfei2,Zhang Hang2,Li Jiayang2,Yu Peng3,Fan Yameng2,Wang Jiazhao2,Liu Huakun4,Dou Shixue4

Affiliation:

1. School of Nuclear Technology and Chemistry & Biology, Hubei Key Laboratory of Radiation Chemistry and Functional Materials Hubei University of Science and Technology Xianning China

2. Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials University of Wollongong North Wollongong New South Wales Australia

3. State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan China

4. Institute of Energy Materials Science University of Shanghai for Science and Technology Shanghai China

Abstract

AbstractGraphitic carbon nitride (g‐C3N4) is a highly recognized two‐dimensional semiconductor material known for its exceptional chemical and physical stability, environmental friendliness, and pollution‐free advantages. These remarkable properties have sparked extensive research in the field of energy storage. This review paper presents the latest advances in the utilization of g‐C3N4 in various energy storage technologies, including lithium‐ion batteries, lithium‐sulfur batteries, sodium‐ion batteries, potassium‐ion batteries, and supercapacitors. One of the key strengths of g‐C3N4 lies in its simple preparation process along with the ease of optimizing its material structure. It possesses abundant amino and Lewis basic groups, as well as a high density of nitrogen, enabling efficient charge transfer and electrolyte solution penetration. Moreover, the graphite‐like layered structure and the presence of large π bonds in g‐C3N4 contribute to its versatility in preparing multifunctional materials with different dimensions, element and group doping, and conjugated systems. These characteristics open up possibilities for expanding its application in energy storage devices. This article comprehensively reviews the research progress on g‐C3N4 in energy storage and highlights its potential for future applications in this field. By exploring the advantages and unique features of g‐C3N4, this paper provides valuable insights into harnessing the full potential of this material for energy storage applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3