Research on Cu-Site Modification of g-C3N4/CeO2-like Z-Scheme Heterojunction for Enhancing CO2 Reduction and Mechanism Insight

Author:

Zhou Yiying1,Cai Junxi1,Sun Yuming1,Jia Shuhan1,Liu Zhonghuan1,Tang Xu1,Hu Bo1,Zhang Yue2,Yan Yan1,Zhu Zhi1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering, Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China

2. School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China

Abstract

In this work, the successful synthesis of a Cu@g-C3N4/CeO2-like Z-scheme heterojunction through hydrothermal and photo-deposition methods represents high CO2 reduction activity with remarkable CO selectivity, as evidenced by the impressive CO yield of 33.8 μmol/g for Cu@g-C3N4/CeO2, which is over 10 times higher than that of g-C3N4 and CeO2 individually. The characterization and control experimental results indicate that the formation of heterojunctions and the introduction of Cu sites promote charge separation and the transfer of hot electrons, as well as the photothermal effect, which are the essential reasons for the improved CO2 reduction activity. Remarkably, Cu@g-C3N4/CeO2 still exhibits about 92% performance even after multiple cycles. In situ FTIR was utilized to confirm the production of COOH* at 1472 cm−1 and to elucidate the mechanism behind the high selectivity for CO production. The study’s investigation into the wide-ranging applicability of the Cu@g-C3N4/CeO2-like Z-scheme heterojunction catalysts is noteworthy, and the exploration of potential reaction mechanisms for CO2 reduction adds valuable insights to the field of catalysis.

Funder

National Natural Science Foundation of China

Senior Talent Research Foundation of Jiangsu University

RGC Postdoctoral Fellowship Scheme of Hong Kong

Postgraduate Research and Practice Innovation Program of Jiangsu Province

Research project approval of Jiangsu University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3