Affiliation:
1. Beijing Key Laboratory of Environmental Science and Engineering School of Materials Science & Engineering Beijing China
2. Yangtze Delta Region Academy of Beijing Institute of Technology Jiaxing China
Abstract
AbstractAluminum metal batteries are considered to be promising secondary batteries due to their high theoretical specific capacity. However, metallic aluminum suffers from corrosion, pulverization, and crushing problems in nonaqueous electrolytes. Constructing a solid‐electrolyte interphase layer on the anode electrode has been confirmed to be the key to improving the cycling performance of rechargeable batteries. Herein, we demonstrate an Al metal anode with a physical protective layer achieved by a simple blade coating method. This modified Al metal anode demonstrates ultra‐low voltage hysteresis (~25 mV at 0.1 mA cm−2 and ~30 mV at 1 mA cm−2), and superior stability (630 h at 0.1 mA cm−2 and 580 h at 1 mA cm−2). When coupling this anode with flake graphite cathode, the assembled full cells exhibit superior cycling stability (92 mAh g−1 maintained after 740 cycles at 0.1 A g−1). The current work presents a promising approach to stabilize Al metal anodes for next‐generation rechargeable aluminum batteries.
Funder
National Natural Science Foundation of China
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献