Constructing Robust Solid Electrolyte Interface via ZrO2 Coating Layer for Hard Carbon Anode in Sodium-Ion Batteries

Author:

Gong YutengORCID,Yu Chengxin,Li YuORCID,Qian Ji,Wu Chuan,Bai YingORCID

Abstract

Hard carbon (HC) has attracted extensive attention due to its rich material source, environmental non-toxicity, superior sodium storage capacity, and lower sodium storage potential, and is considered most likely to be a commercial anode material for sodium-ion batteries (SIBs). Nevertheless, the limited initial Coulombic efficiency (ICE) of HC is the main bottleneck hindering its practical application. To alleviate this issue, herein, a ZrO2 coating was skillfully constructed by using a facile liquid phase coating method. The ZrO2 coating can act as a physical barrier to prevent direct contact between the HC surface and the electrolyte, thus effectively reducing irreversible sodium adsorption and inhibiting the continuous decomposition of the electrolyte. Meanwhile, this fresh interface can contribute to the generation of a thinner solid electrolyte interface (SEI) with high ionic conductivity. As a result, the ICE of the ZrO2-coated HC electrode can be optimized up to 79.2% (64.4% for pristine HC). Furthermore, the ZrO2-coated HC electrode delivers outstanding cyclic stability so that the capacity retention rate can reach 82.6% after 2000 cycles at 1 A g−1 (55.8% for pristine HC). This work provides a flexible and versatile surface modification method to improve the electrochemical property of HC, and hopefully accelerate the practical application of HC anodes for SIBs.

Funder

National Natural Science Foundation of China

Beijing Institute of Technology Research Fund Program for Young Scholars

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3