A Mixed Ionic/Electronic Conductor Interphase Enhances Interfacial Stability for Aluminium‐Metal Anode

Author:

Xie Chen12,Wu Feng123,Lv Zekai12,Zhang Yixin12,Mei Yang1,Ma Wenwen1,Sun Wenbin4,Zhou Jiahui1ORCID,Xie Man12

Affiliation:

1. Beijing Key Laboratory of Environmental Science and Engineering School of Material Science & Engineering Beijing Institute of Technology Beijing 100081 China

2. Chongqing Innovation Center Beijing Institute of Technology Chongqing 401120 China

3. Collaborative Innovation Center of Electric Vehicles in Beijing Beijing 100081 China

4. Henan Great Power Energy Co., LTD. Zhumadian Henan 463000 China

Abstract

AbstractMetallic aluminium (Al) anodes are considered to be a promising alternative for large‐scale energy storage due to their inherent low cost, high safety and ideal weight/volume capacity (2980 mAh g−1/8040 mAh cm−3). However, aluminum‐ion batteries (AIBs) based on room‐temperature ionic liquid electrolytes have encountered challenges in practical applications, such as side reactions and slow sluggish kinetics. The anode/electrolyte interface has attracted considerable attention for addressing the aforementioned challenges. Here, an AlCl3/Sn‐based mixed ionic/electronic conductor interface (MCI) is designed through a facile displacement reaction. The stability of the modified Al metal anode has been significantly enhance by superior charge transfer, excellent corrosion resistance and dense deposition morphology. Consequently, in symmetric cell, the Al@Sn electrode with MCI offers a lifespan for about 700 h (350 cycles) at 0.1 mA cm−2. Moreover, combined with the graphite cathode, the pouch cells based on this novel anode present outstanding cycling performance, demonstrating a maintained capacity of 87.1 mAh g−1 after 450 cycles. This research presents an innovative Al‐metal anode for ionic liquid‐based Al‐ion batteries.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Chongqing Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3