Effect of Heat Treatment on Zirconium Oxide High‐k Gate Dielectric in Silicon‐Based Metal Oxide Semiconductor Capacitors

Author:

Cai Haotian12,Tuokedaerhan Kamale12ORCID,Lu Zhenchuan12,Du Hongguo12,Zhang Renjia12

Affiliation:

1. Xinjiang Key Laboratory of Solid State Physics and Devices Xinjiang University Urumqi Xinjiang 830046 China

2. School of Physics Science and Technology Xinjiang University Urumqi Xinjiang 830046 China

Abstract

Herein, zirconia thin films are successfully prepared on silicon substrates using the sol–gel method, and the microstructure, optical, and electrical properties of zirconia high‐k gate dielectric films are analyzed at different annealing temperatures. X‐ray diffraction results show that ZrO2 films crystallize above 500 °C and the grain size increases with the increase of annealing temperature; X‐ray photoelectron spectroscopy analysis confirms that metal–oxygen bonds can be effectively formed and defects in the films are eliminated by annealing treatment, with significant changes in the valence band shift (ΔEv) and conduction band shift (ΔEc) with increasing annealing temperature. Analysis of the optical properties of the films by UV‐Vis confirms that all zirconia films have high transmittance, with the bandgap increasing from 5.54 to 5.74 eV with increasing annealing temperature. Atomic force microscope and field emission scanning electron microscope show that the film quality is better and the root mean square roughness of the zirconia films increases from 0.551 to 1.190 nm and the film thickness decreases from 176.19 to 58.73 nm with increasing annealing temperature. Electrical performance tests show that proper annealing is effective in improving electrical properties, such as obtaining a larger dielectric constant (k) and a lower leakage current density.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3