Affiliation:
1. Department of Photonics and Nanoelectronics Hanyang University Ansan 15588 Republic of Korea
2. BK21 FOUR ERICA-ACE Center Hanyang University Ansan 15588 Republic of Korea
3. Shandong Technology Center of Nanodevices and Integration School of Microelectronics Shandong University Jinan 250100 China
Abstract
Herein, the effects of oxygen‐compensated capping layer (CCL) on the electrical performance and stability of indium‐tin‐zinc‐oxide (ITZO) thin‐film transistors (TFTs) are investigated. Two different channel structures, namely, single and dual channels, are tested for the ITZO TFTs. The dual‐channel layer is created by depositing an oxygen CCL on the oxygen‐uncompensated channel layer (UCL), while the single‐channel layer consists only of the oxygen UCL. It is found that the oxygen CCL is critical for enhancing the electrical properties of dual‐channel ITZO TFT and its stability under different stress modes such as dynamic stress, positive bias temperature stress, and negative bias illumination stress. The dual‐channel ITZO TFT exhibits a saturation field‐effect mobility of 16.69 cm2 V−1s−1, a threshold voltage of 6.80 V, and a subthreshold swing of 0.22 V dec−1. Furthermore, it is revealed that the higher metal‐oxide concentration and fewer defects in the dual channel lead to enhanced electrical performance and stability of the device. This work demonstrates the potential of utilizing the oxygen CCL for the highly reliable operation of oxide semiconductor TFTs.
Funder
Key Technology Research and Development Program of Shandong
Ministry of Trade, Industry and Energy
Subject
Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献