Development of High‐Reflectivity and Antireflection Dielectric Multilayer Mirrors for AlGaN‐Based Ultraviolet‐B Laser Diodes and their Device Applications

Author:

Yabutani Ayumu1ORCID,Hasegawa Ryota1,Kondo Ryosuke1,Matsubara Eri1,Imai Daichi1,Iwayama Sho12,Jin Yoshito3,Matsumoto Tatsuya3,Toramaru Masamitsu3,Torii Hironori4,Takeuchi Tetsuya1,Kamiyama Satoshi1,Miyake Hideto2,Iwaya Motoaki1

Affiliation:

1. Department of Materials Science and Engineering Meijo University Nagoya 468-8502 Japan

2. Department of Electrical and Electronic Engineering Mie University Tsu 514-0102 Japan

3. The Japan Steel Works, Ltd. Yokohama 236-0004 Japan

4. JSW AFTY Corporation Hachioji 192-0918 Japan

Abstract

Fabrication techniques for high‐reflectivity (HR) and antireflection (AR) dielectric multilayer mirrors for AlGaN‐based ultraviolet‐B (UV‐B) laser diodes are developed. After depositing several dielectric materials and evaluating their complex refractive indices via ellipsometry, it is determined that SiO2 as a low‐refractive‐index material and Ta2O5 as a high‐refractive‐index material are appropriate material combinations in the UV‐B region at a light wavelength of ≈300 nm due to their low extinction coefficients and large refractive index difference. Based on these results, HR mirror with a reflectance of >99% in the UV‐B region at a center wavelength of 310 nm and an AR mirror with a reflectance of ≈8% in the same wavelength range are demonstrated; a mirror with reflectance that is almost equal to the designed value is demonstrated. Furthermore, these mirrors are coated on the respective edge surfaces of the UV‐B laser diodes. A comparison of the characteristics of the same device before and after edge coating reveals a reduction in the threshold current density of laser oscillation, whereas, simultaneously, an increase in slope efficiency and external differential quantum efficiency is observed. The improvement of these device characteristics, estimated from the above reflectance values, is confirmed to be almost theoretically explainable.

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3