Frontier Molecular Orbital Offset as an Empirical Descriptor for Predicting Short Circuit Current of Nonfullerene Organic Solar Cells

Author:

Lee Min-Hsuan12ORCID

Affiliation:

1. Institute of Environmental and Occupational Health Sciences School of Medicine National Yang Ming Chiao Tung University Taipei 112 Taiwan

2. Institute of Environmental Engineering National Yang Ming Chiao Tung University East District Hsinchu 300 Taiwan

Abstract

An efficient computational approach, in contrast to the trial‐and‐error experiment process, for predicting, characterizing, and optimizing the macroscopic performance parameters (e.g., short‐circuit current density (Jsc)) of nonfullerene acceptors‐based organic solar cells (OSCs) remains a rarely addressed and complicated challenge. In this work, a data‐driven approach is used to predict the electrical performance of nonfullerene OSCs and reveal their charge transfer behaviors. The eXtreme Gradient Boosting (XGBoost) model within empirical descriptors is used to understand the governing feature for enhancement of Jsc, which is vital for the design and discovery of new donor/nonfullerene acceptor photoactive layers for photovoltaic applications. Through the well‐trained XGBoost model and SHapley Additive exPlanations theory, the descriptors impacting the Jsc of nonfullerene OSCs are further explained and analyzed. Remarkably, the XGBoost model combines four empirical descriptors to achieve an impressive prediction accuracy (R2 > 0.8). The results from data‐driven approaches prove that the lowest unoccupied molecular orbital (LUMO) offset (between donor and acceptor) plays the most significant role in increasing the Jsc values of nonfullerene OSCs. Moreover, this study highlights the effect of LUMO offset on the photoinduced charge transfer process of donor/non‐fullerene acceptor blends, which might pave the way toward rapid and precise energy‐level tuning of efficient OSC materials.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3