High‐Throughput Screening of Low‐Bandgap Organic Semiconductors for Photovoltaic Applications: In the Search of Correlations

Author:

Torimtubun Alfonsina Abat Amelenan1ORCID,Alonso‐Navarro Matías J.23,Quesada‐Ramírez Arianna1,Rodríguez‐Martínez Xabier4ORCID,Segura José L.2ORCID,Goñi Alejandro R.15ORCID,Campoy‐Quiles Mariano1ORCID

Affiliation:

1. Institute of Materials Science of Barcelona (ICMAB‐CSIC) Campus Universitat Autònoma de Barcelona 08193 Bellatera Spain

2. Departamento Química Orgánica I Facultad Ciencias Químicas Universidad Complutense de Madrid E‐28040 Madrid Spain

3. Chemical and Environmental Technology Department ESCET, Universidad Rey Juan Carlos E‐28933 Madrid Spain

4. Institute for Physical Chemistry Heidelberg University Im Neuenheimer Feld 253 69120 Heidelberg Germany

5. ICREA Passeig Lluís Companys 23 08010 Barcelona Spain

Abstract

Low‐bandgap nonfullerene acceptors (NFAs) offer a unique potential for photovoltaic (PV) applications, such as transparent PV and agrivoltaics. Evaluating each new PV system to achieve the optimum thickness, microstructure, and device performance is, however, a complex multiparametric challenge with large time and resource requirements. Herein, the PV potential of low‐bandgap donor and NFA materials by combining high‐throughput screening and statistical methods is evaluated. The use of thickness gradients (20–600 nm) facilitates the fabrication of more than 2000 doctor‐bladed devices from 24 different low‐bandgap blend combinations. The corresponding power conversion efficiencies varies significantly, from 0.06% to 10.45% across materials and thicknesses. The self‐consistency of the large dataset allows to perform a parameter sensitivity study as well as parameter correlation analysis. These reveal that the choice of materials and energy alignment‐related features (i.e., electron affinity offset, ionization energy offset, bandgap, and energy loss) has the largest influence on final device performance, while processing conditions appear less important for the final efficiencies. Our study demonstrates that high‐throughput experimentation is a perfect match for correlation analyses in order to gain a statistically meaningful understanding of these systems, potentially accelerating the discovery of new materials.

Funder

Ministerio de Ciencia e Innovación

Alexander von Humboldt-Stiftung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3