Extrapolative Machine Learning for Accurate Efficiency Prediction in Non‐Fullerene Ternary Organic Solar Cells: Leveraging Computable Molecular Descriptors in High‐Throughput Virtual Screening

Author:

Liao Jian‐Ming1,Tsai Hui‐Hsu Gavin12ORCID

Affiliation:

1. Department of Chemistry National Central University No. 300, Zhongda Road Zhongli District Taoyuan City 32001 Taiwan

2. Research Center of New Generation Light Driven Photovoltaic Modules National Central University Taoyuan 32001 Taiwan

Abstract

Adding a third component to binary organic solar cells (OSCs) enhances ternary OSCs, boosting power conversion efficiency (PCE). However, developing and optimizing appropriate donors, acceptors, and ternary materials remains a complex and demanding task. This study presents four machine‐learning (ML) predictive models using XGBoost and ANN approaches, utilizing both experimental and DFT‐derived HOMO and LUMO levels for efficient high‐throughput virtual screening (HTVS) of top candidates based on PCE. Two distinct latent databases were employed for HTVS: one consisting of 429 413 uniquely recombined ternary OSC systems from experimentally available data, and another comprising ≈2.3 million unique donor molecules from the Harvard Clean Energy Project database (CEPDB). The four ML models demonstrated notable predictive accuracy for PCE on a test dataset containing molecules closely aligned with the training set (interpolation). However, the XGBoost model showed constrained extrapolative ability for molecules significantly divergent from those in the training dataset. In contrast, the ANN models displayed a robust extrapolative capacity in HTVS, successfully predicting new potential ternary OSC systems and leading donors with PCE values exceeding 20%. Our ML models use HOMO and LUMO inputs for donors, acceptors, and ternaries, facilitating efficient optimization via rapid HTVS of high‐performance ternary materials.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3